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Abdrsrt. A correlated two-component percolation model is constructed to treat random 
bonds between next-nearest neighbours. Monte Carlo simulations an a 213 square lattice 
are performed. By employing real-space renormalization techniques, it is proved that the 
criticality is controlled by a single fixed point and the percolation exponents are unaffected 
by correlations. The discovered power law dependence with exponent I /  Y oflhe percolation 
threshold p E  on the concentration of the second phase is discussed. 

Percolation theory has received much attention in recent years, partly because it 
provides a simple geometrical interpretation of phase transitions and also because of 
its direct relevance to various physical phenomena. (See, e.g., Essam 1980, Stauffer 
1985 for recent reviews.) The two classical versions are the site and the bond percolation. 
More general models, such as site-bond (Shapiro 1979). directed bond (Blease 1977), 
and polychromatic (Deutscher 1983, Zallen 1977) percolation, have recently been 
introduced. 

In the present paper another generalization i s  considered, the contributions of the 
correlated next-nearest neighbour bonds to the cluster formation on a ZD square lattice. 
In the method every site can be independently occupied by a particle of type A (referred 
to hereafter as ‘black particle’) or of type B (‘grey particle’), or be empty, with 
probability p, g and 1 - p - g ,  respectively. Similarly to the ordinary site percolation 
problem, all black sites in nearest neighbour positions are assumed to be connected 
and form clusters (see figure 1). The grey particles affect the percolation path by adding 
diagonal links between its four adjacent lattice sites. For example the box shown in 
figure I (b )  percolates, while the chain l ( c )  does not. Thus the lattice pattern consists 
of randomly distributed regions of site and bond defined clusters, which interact via 
common interfaces. This model is reminiscent of the two-component bond problem 
studied by Bunde el a/ (1985), but the black cluster ramification is not fixed. We believe 
that the correlated two-component percolation as introduced reflects more precisely 
the physics of layer formation in the presence of active centres (Evans and Sanders 
1989) as well as the role of dispersed insulating phase in composite superionics (Poulsen 
1985). 

In particular we aim to determine the conditions for criticality. 
Monte Carlo (MC) simulations were carried out in  order to study the cluster 

formation dependence on concentration of the active centres (grey particles). 2u square 
lattices of size L x  L, wi’h L =  800, 1200, 1600 and 2000 were used. Each MC step with 
a given set of probabilities [ P, g )  started with assigning the lattice. A site was considered 
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Figure 1. Cluster formation rules. Box (a) percolates via nearest neighbour links (ordinary 
rite percolation); box (b)  percolates via diagonal link provided by the grey site; no coupling 
between black sites exists in box (c ) .  The pattern shown percolates in both horizontal and 
vertical directions. 

to be occupied by a black particle if the random number r is less than p, where r e  [0, l) ,  
by a grey particle if p S r < p + g, or  unoccupied if r 3 p + g. Several runs at different 
configurations were performed to improve the statistics. Preliminary calculations by 
the small-cell position space renormalization group (PSRC) were made to localize the 
percolation threshold pc(g) .  Varying p in the vicinity of this zero-order approximation 
for pc  (10 values below and 10 values above with average step of 0.003), cluster 
enumerations were carried out by employing the technique of Hoshen and Kopelman 
(19761, which has been proved to be extremely efficient for large lattices. 

Following Hoshen er a /  (1987) the percolation probability P (the fraction of black 
sites belonging to the largest cluster) and the susceptibility x (the mean cluster size) 
were approximated by: 

,y =- s2n5 - s,,, (1) 
G ?  Y 2 ,  

1 
P = - s , , ,  G 

where n, is the number of clusters of size s, s,,, is the size of the largest cluster and 
G = Z, sn, is the total number of black sites. The percolation threshold pc was identified 
with the position of the peak in the ,y = x ( p )  curve. 

The concentration g of the grey particles was varied from g = 0 to g = 0.593 (for 
g 0.593 an infinite grey cluster exists and no black percolation is possible). Results 
for pc are shown in table 1. Each value was estimated by averaging over 1 6 t 6 4  M C  

runs. For the lower limit g = 0, the value of p< = 0.593 confirms the result for the square 
lattice. For the upper limit g+O.593, pc asymptotically approaches 0.407 which is the 

Table 1. Monte Carlo results far the percolation threshold p c ( g ) ,  where g is the grey sites 
concentration, 

g 0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.50 0.55 0.58 
P< 0.582 0.555 0.525 0.495 0.475 0.470 0.448 0.440 0.420 0.410 0.408 0.407 
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percolation threshold value for a system with both nearest and next-nearest neighbour 
interactions (Stauffer 1985). 

The PSRG method was employed in determining the critical parameters of the system 
in a version that extends previous studies by Reynolds et a /  (1977, 1978) and Shapiro 
(1979). The most simple approach is to consider a RG procedure that keeps the 
renormalized nodes uncorrelated, i.e. the two different probabilities for site occupation 
p, g to be worked out separately. The lattice was partitioned into cells consisting of 
four sites (rescaling factor b = 2 ) ,  each cell scaled to a single site. The renormalized 
black-occupation probability p' was obtained by summing up the probabilities of all 
horizontally percolated cells. All configurations which provide diagonal links for the 
adjacent cells but do not percolate themselves were assumed to contribute to g' (cf 
figure 2). Then it was straightforward to derive the recursion relations: 

p' = -p4 - 4p3g + 2p2( 1 + 2g - 92) ( 2 a )  

g'= -2g3+g2(3 -2p2) (26) 

1 3 p + g  (2c) 

where the last equation defines the physical region of ( p ,  g)-plane. The equations (2) 
solved together lead to the flow diagram shown in figure 3. There are six fixed points: 
three trivial fixed points (p, g)  = (0, O), (1,O) and (0, l ) ,  two fixed points (0.618,O) and 
(0, OS), that correspond to the pure one-component site and bond percolations respec- 
tively, and a new fixed point at (0.38,0.62). There are two critical lines starting from 
this point and reaching both fixed points (0.618,O) and (0 ,0 .5 ) .  The exponents U 

evaluated with the help of the linearized equations (2) were found to be 1.63 at both 
fixed points (0.618,O) and (0.38,0.62). This is consistent with the estimation obtained 
by Reynolds et al (1977) for four-site approximation. Therefore, the correlation does 
not affect the critical exponents which are the same as for the site and the bond 
problems in accordance with the concept of universality (Shapiro 1979). This conclusion 

U 

p, $3 
FigureZ. PSRG schemes. Full circles represen1 black-occupied sites, shaded circles represent 
grey sites, and boxen correspond t o  threefold degenerate sites, i.e. black, grey, or empty. 
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Figure 3. The Row diagram. Full circles mark the fixed points. T h e  critical lines separate 
the percolating and non-percolating regions in the parameter plane. 

was confirmed by the finite-size scaling plots 

where typical values of p=&=0.138, y = g = 2 . 4  and U = +  were used. Here L is the 
lattice size, f and h are suitable scaling functions. The MC patterns for PL and ,yL taken 
at g = 0.1 are shown in figures 4 and 5, respectively. The data collapse is relatively good. 

1 , , . . , . . ,  I . I . , . . . I  . , I . . .  1 0 
0 

0.1 1 10 

I(P-Pc)l.L”“ 
Figure 4. The finite size scaling function PLLp’” shown as a function of Ip-pJL”“.  L is 
the linear size of the lattice from 800 (*), 1200 (A) ,  1600 (0)  and 2000 (0). PL is the 
percolation probability (the fraction of black rites, belonging to the largest cluster). The 
concentration of grey particles g is taken 0.1. 
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Figure 5. The finite size scaling function xLL-'/" shown as a function of Ip-pClL"". L is 
the linear size of the lattice from 800 (*), 1200 (A), 1600 (0)  and 2000 (0). ,yL is the 
susceptibility (the mean  luste er size). The concentration of grey particles g is taken 0.1. 

On the other hand the study of percolation threshold pc  revealed a surprising power 
law dependence on concentration of the grey particles. The data obtained from MC 

experiments are presented in table 1 and the hest fit (see figure 6) gives 

Y C \ 6  n ( o = n \ - n  ~ ~ " I  Y E \ 5 / - ' 6  . (4) 

This relation could find an explanation in terms of scaling properties of the system 
in the vicinity of the percolation threshold. An important feature for the model 

Figure 6. The shift of the percolation threshold prig) as a function of grey sites con. 
centration. 
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considered is the presence of two length scales: the correlation length when the 
diagonal bonds are removed, and the correlation length 5, when all links are taken 
into account. Let us consider the probability P ( r )  to have a cluster of size r, which is 
composed of smaller pure black clusters of size r, (1 r, = r)  joined by grey particles: 

I V Petrov et a/ 

P(r)-exp(-r lS)= 1 g" 'n  P d r , )  
"'Cl' i 

where the summation is over all possible configurations r, and Po(,,) is the probability 
of a pure black subcluster of size r , .  The approximation made in the equation ( 5 )  is 
valid for small concentration of grey-occupied sites g<< 1. Taking the logarithm from 
both sides of (5 )  one obtains 

where for the normalization constant is accepted the lattice spacing a. Since at p + p , ( g )  
the correlation length 5 diverges as Ip-p,(g)l-" and CO is finite, the dependence (4) 
follows after simple calculations. 

In conclusion we have introduced a generalized two-component percolation prob- 
lem accounting for random bonds between next-nearest neighbours. We have developed 
a RG scheme which enables us to obtain the phase diagram and to demonstrate that 
the problem belongs to the same universality class as the ordinary site and bond 
percolation. In addition we have discovered a power law dependence with exponent 
I / u  of p , ( g = O ) - p , ( g )  on the concentration g of the second phase. 

The possibility to control the intrinsic length of the system by changing the impurity 
density is very attractive for practical applications. It could be helpful in understanding 
the physical phenomena like adsorption, superconductivity in granular materials, ionic 
conductivity in dispersed solid electrolytes, etc. 

References 

Blease J 1977 J.  Phyr. C: Solid Slnle Phyr. IO 3461 
Bunde A, Dietrich Wand Roman E 1985 Phyr. Re". Lerr. 55 5 
Deutscher G 1983 Percolorion, Locnliiolion and Superconductiuity (NATO AS1 W. E )  VOI 109. ed A M 

Essam J W 1980 Rep. Prog. Phys. 43 833 
Evans J Wand Sanders D E 1989 Phys. Rev. B 39 1587 
Hashen J and Kopelman R 1976 Phys. Re". B 14 3438 
Horhen J, Kopelman R and Newhoure J S 1987 J.  Phys. Chem. 91 212 
Poulsen F W 1985 Transpurr on Composire Ionic Conduerurs ed F W Poulsen, N H Andersen, K Clausen, 

Roman H E, Bunde A and Dieterich W 1986 Phys. Reo. U 34 3439 
Reynolds P J, Klein W and Stanley H E 1977 J.  P h w  C: Solid Slate Phyr. IO L167 
Reynolds P J, Stanley H E and Klein W 1978 J ,  Phys. A Math. Gen. II L199 
Shapira B 1979 J,  Phys. C: Solid Srore Phy.5. 12 3185 
Stauffer D 1985 lnrroduerion to Percolarion Theor) (London: Taylor and Francis) 
Zallen R 1977 Ph-yr. Rev. B 16 1426 

Goldman and S A Stuan (New York: Plenum) p 9 5  

S Skaapur and 0 T Sorensen (Roskilde, Denmark: Riso National Laboratory) p67  


